Physics > Geophysics
[Submitted on 13 Sep 2024]
Title:Using Convolutional Neural Networks for Denoising and Deblending of Marine Seismic Data
View PDFAbstract:Processing marine seismic data is computationally demanding and consists of multiple time-consuming steps. Neural network based processing can, in theory, significantly reduce processing time and has the potential to change the way seismic processing is done. In this paper we are using deep convolutional neural networks (CNNs) to remove seismic interference noise and to deblend seismic data. To train such networks, a significant amount of computational memory is needed since a single shot gather consists of more than 106 data samples. Preliminary results are promising both for denoising and deblending. However, we also observed that the results are affected by the signal-to-noise ratio (SnR). Moving to common channel domain is a way of breaking the coherency of the noise while also reducing the input volume size. This makes it easier for the network to distinguish between signal and noise. It also increases the efficiency of the GPU memory usage by enabling better utilization of multi core processing. Deblending in common channel domain with the use of a CNN yields relatively good results and is an improvement compared to shot domain.
Current browse context:
physics.geo-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.