Mathematics > Probability
[Submitted on 12 Sep 2024]
Title:Entropy Contractions in Markov Chains: Half-Step, Full-Step and Continuous-Time
View PDF HTML (experimental)Abstract:This paper considers the speed of convergence (mixing) of a finite Markov kernel $P$ with respect to the Kullback-Leibler divergence (entropy). Given a Markov kernel one defines either a discrete-time Markov chain (with the $n$-step transition kernel given by the matrix power $P^n$) or a continuous-time Markov process (with the time-$t$ transition kernel given by $e^{t(P-\mathrm{Id})}$). The contraction of entropy for $n=1$ or $t=0+$ are characterized by the famous functional inequalities, the strong data processing inequality (SDPI) and the modified log-Sobolev inequality (MLSI), respectively. When $P=KK^*$ is written as the product of a kernel and its adjoint, one could also consider the ``half-step'' contraction, which is the SDPI for $K$, while the ``full-step'' contraction refers to the SDPI for $P$. The work [DMLM03] claimed that these contraction coefficients (half-step, full-step, and continuous-time) are generally within a constant factor of each other. We disprove this and related conjectures by working out a number of different counterexamples. In particular, we construct (a) a continuous-time Markov process that contracts arbitrarily faster than its discrete-time counterpart; and (b) a kernel $P$ such that $P^{m+1}$ contracts arbitrarily better than $P^m$. Hence, our main conclusion is that the four standard inequalities comparing five common notions of entropy and variance contraction are generally not improvable.
In the process of analyzing the counterexamples, we survey and sharpen the tools for bounding the contraction coefficients and characterize properties of extremizers of the respective functional inequalities. As our examples range from Bernoulli-Laplace model, random walks on graphs, to birth-death chains, the paper is also intended as a tutorial on computing MLSI, SDPI and other constants for these types of commonly occurring Markov chains.
Current browse context:
math.PR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.