Electrical Engineering and Systems Science > Audio and Speech Processing
[Submitted on 31 Aug 2024]
Title:Digit Recognition using Multimodal Spiking Neural Networks
View PDF HTML (experimental)Abstract:Spiking neural networks (SNNs) are the third generation of neural networks that are biologically inspired to process data in a fashion that emulates the exchange of signals in the brain. Within the Computer Vision community SNNs have garnered significant attention due in large part to the availability of event-based sensors that produce a spatially resolved spike train in response to changes in scene radiance. SNNs are used to process event-based data due to their neuromorphic nature. The proposed work examines the neuromorphic advantage of fusing multiple sensory inputs in classification tasks. Specifically we study the performance of a SNN in digit classification by passing in a visual modality branch (Neuromorphic-MNIST [N-MNIST]) and an auditory modality branch (Spiking Heidelberg Digits [SHD]) from datasets that were created using event-based sensors to generate a series of time-dependent events. It is observed that multi-modal SNNs outperform unimodal visual and unimodal auditory SNNs. Furthermore, it is observed that the process of sensory fusion is insensitive to the depth at which the visual and auditory branches are combined. This work achieves a 98.43% accuracy on the combined N-MNIST and SHD dataset using a multimodal SNN that concatenates the visual and auditory branches at a late depth.
Submission history
From: William Bjorndahl [view email][v1] Sat, 31 Aug 2024 22:27:40 UTC (2,041 KB)
Current browse context:
eess.AS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.