Computer Science > Computation and Language
[Submitted on 24 Aug 2024 (v1), last revised 6 Sep 2024 (this version, v2)]
Title:Are LLM-based methods good enough for detecting unfair terms of service?
View PDF HTML (experimental)Abstract:Countless terms of service (ToS) are being signed everyday by users all over the world while interacting with all kinds of apps and websites. More often than not, these online contracts spanning double-digit pages are signed blindly by users who simply want immediate access to the desired service. What would normally require a consultation with a legal team, has now become a mundane activity consisting of a few clicks where users potentially sign away their rights, for instance in terms of their data privacy, to countless online entities/companies. Large language models (LLMs) are good at parsing long text-based documents, and could potentially be adopted to help users when dealing with dubious clauses in ToS and their underlying privacy policies. To investigate the utility of existing models for this task, we first build a dataset consisting of 12 questions applied individually to a set of privacy policies crawled from popular websites. Thereafter, a series of open-source as well as commercial chatbots such as ChatGPT, are queried over each question, with the answers being compared to a given ground truth. Our results show that some open-source models are able to provide a higher accuracy compared to some commercial models. However, the best performance is recorded from a commercial chatbot (ChatGPT4). Overall, all models perform only slightly better than random at this task. Consequently, their performance needs to be significantly improved before they can be adopted at large for this purpose.
Submission history
From: Mirgita Frasheri [view email][v1] Sat, 24 Aug 2024 09:26:59 UTC (13 KB)
[v2] Fri, 6 Sep 2024 16:12:00 UTC (13 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.