Computer Science > Computational Complexity
[Submitted on 27 Aug 2024]
Title:On Approximability of Satisfiable k-CSPs: V
View PDFAbstract:We propose a framework of algorithm vs. hardness for all Max-CSPs and demonstrate it for a large class of predicates. This framework extends the work of Raghavendra [STOC, 2008], who showed a similar result for almost satisfiable Max-CSPs.
Our framework is based on a new hybrid approximation algorithm, which uses a combination of the Gaussian elimination technique (i.e., solving a system of linear equations over an Abelian group) and the semidefinite programming relaxation. We complement our algorithm with a matching dictator vs. quasirandom test that has perfect completeness.
The analysis of our dictator vs. quasirandom test is based on a novel invariance principle, which we call the mixed invariance principle. Our mixed invariance principle is an extension of the invariance principle of Mossel, O'Donnell and Oleszkiewicz [Annals of Mathematics, 2010] which plays a crucial role in Raghavendra's work. The mixed invariance principle allows one to relate 3-wise correlations over discrete probability spaces with expectations over spaces that are a mixture of Guassian spaces and Abelian groups, and may be of independent interest.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.