Computer Science > Artificial Intelligence
[Submitted on 19 Aug 2024]
Title:Attention is a smoothed cubic spline
View PDF HTML (experimental)Abstract:We highlight a perhaps important but hitherto unobserved insight: The attention module in a transformer is a smoothed cubic spline. Viewed in this manner, this mysterious but critical component of a transformer becomes a natural development of an old notion deeply entrenched in classical approximation theory. More precisely, we show that with ReLU-activation, attention, masked attention, encoder-decoder attention are all cubic splines. As every component in a transformer is constructed out of compositions of various attention modules (= cubic splines) and feed forward neural networks (= linear splines), all its components -- encoder, decoder, and encoder-decoder blocks; multilayered encoders and decoders; the transformer itself -- are cubic or higher-order splines. If we assume the Pierce-Birkhoff conjecture, then the converse also holds, i.e., every spline is a ReLU-activated encoder. Since a spline is generally just $C^2$, one way to obtain a smoothed $C^\infty$-version is by replacing ReLU with a smooth activation; and if this activation is chosen to be SoftMax, we recover the original transformer as proposed by Vaswani et al. This insight sheds light on the nature of the transformer by casting it entirely in terms of splines, one of the best known and thoroughly understood objects in applied mathematics.
Current browse context:
cs.AI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.