Computer Science > Computer Vision and Pattern Recognition
[Submitted on 18 Aug 2024]
Title:Source-Free Test-Time Adaptation For Online Surface-Defect Detection
View PDF HTML (experimental)Abstract:Surface defect detection is significant in industrial production. However, detecting defects with varying textures and anomaly classes during the test time is challenging. This arises due to the differences in data distributions between source and target domains. Collecting and annotating new data from the target domain and retraining the model is time-consuming and costly. In this paper, we propose a novel test-time adaptation surface-defect detection approach that adapts pre-trained models to new domains and classes during inference. Our approach involves two core ideas. Firstly, we introduce a supervisor to filter samples and select only those with high confidence to update the model. This ensures that the model is not excessively biased by incorrect data. Secondly, we propose the augmented mean prediction to generate robust pseudo labels and a dynamically-balancing loss to facilitate the model in effectively integrating classification and segmentation results to improve surface-defect detection accuracy. Our approach is real-time and does not require additional offline retraining. Experiments demonstrate it outperforms state-of-the-art techniques.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.