Computer Science > Machine Learning
[Submitted on 15 Aug 2024]
Title:Moving Healthcare AI-Support Systems for Visually Detectable Diseases onto Constrained Devices
View PDFAbstract:Image classification usually requires connectivity and access to the cloud which is often limited in many parts of the world, including hard to reach rural areas. TinyML aims to solve this problem by hosting AI assistants on constrained devices, eliminating connectivity issues by processing data within the device itself, without internet or cloud access. This pilot study explores the use of tinyML to provide healthcare support with low spec devices in low connectivity environments, focusing on diagnosis of skin diseases and the ethical use of AI assistants in a healthcare setting. To investigate this, 10,000 images of skin lesions were used to train a model for classifying visually detectable diseases (VDDs). The model weights were then offloaded to a Raspberry Pi with a webcam attached, to be used for the classification of skin lesions without internet access. It was found that the developed prototype achieved a test accuracy of 78% and a test loss of 1.08.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.