Computer Science > Computer Vision and Pattern Recognition
[Submitted on 5 Aug 2024 (v1), last revised 1 Dec 2024 (this version, v3)]
Title:MeshAnything V2: Artist-Created Mesh Generation With Adjacent Mesh Tokenization
View PDF HTML (experimental)Abstract:Meshes are the de facto 3D representation in the industry but are labor-intensive to produce. Recently, a line of research has focused on autoregressively generating meshes. This approach processes meshes into a sequence composed of vertices and then generates them vertex by vertex, similar to how a language model generates text. These methods have achieved some success but still struggle to generate complex meshes. One primary reason for this limitation is their inefficient tokenization methods. To address this issue, we introduce MeshAnything V2, an advanced mesh generation model designed to create Artist-Created Meshes that align precisely with specified shapes. A key innovation behind MeshAnything V2 is our novel Adjacent Mesh Tokenization (AMT) method. Unlike traditional approaches that represent each face using three vertices, AMT optimizes this by employing a single vertex wherever feasible, effectively reducing the token sequence length by about half on average. This not only streamlines the tokenization process but also results in more compact and well-structured sequences, enhancing the efficiency of mesh generation. With these improvements, MeshAnything V2 effectively doubles the face limit compared to previous models, delivering superior performance without increasing computational costs. We will make our code and models publicly available. Project Page: this https URL
Submission history
From: Yiwen Chen [view email][v1] Mon, 5 Aug 2024 15:33:45 UTC (3,659 KB)
[v2] Wed, 20 Nov 2024 09:20:09 UTC (3,649 KB)
[v3] Sun, 1 Dec 2024 14:34:01 UTC (3,649 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.