Computer Science > Machine Learning
[Submitted on 31 Jul 2024 (v1), last revised 30 Dec 2024 (this version, v3)]
Title:Large Language Monkeys: Scaling Inference Compute with Repeated Sampling
View PDF HTML (experimental)Abstract:Scaling the amount of compute used to train language models has dramatically improved their capabilities. However, when it comes to inference, we often limit models to making only one attempt at a problem. Here, we explore inference compute as another axis for scaling, using the simple technique of repeatedly sampling candidate solutions from a model. Across multiple tasks and models, we observe that coverage -- the fraction of problems that are solved by any generated sample -- scales with the number of samples over four orders of magnitude. Interestingly, the relationship between coverage and the number of samples is often log-linear and can be modelled with an exponentiated power law, suggesting the existence of inference-time scaling laws. In domains like coding and formal proofs, where answers can be automatically verified, these increases in coverage directly translate into improved performance. When we apply repeated sampling to SWE-bench Lite, the fraction of issues solved with DeepSeek-Coder-V2-Instruct increases from 15.9% with one sample to 56% with 250 samples, outperforming the single-sample state-of-the-art of 43%. In domains without automatic verifiers, we find that common methods for picking from a sample collection (majority voting and reward models) plateau beyond several hundred samples and fail to fully scale with the sample budget.
Submission history
From: Bradley Brown [view email][v1] Wed, 31 Jul 2024 17:57:25 UTC (592 KB)
[v2] Mon, 16 Sep 2024 17:58:42 UTC (405 KB)
[v3] Mon, 30 Dec 2024 19:03:24 UTC (405 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.