Computer Science > Hardware Architecture
[Submitted on 25 Jul 2024 (v1), last revised 1 Aug 2024 (this version, v2)]
Title:HG-PIPE: Vision Transformer Acceleration with Hybrid-Grained Pipeline
View PDF HTML (experimental)Abstract:Vision Transformer (ViT) acceleration with field programmable gate array (FPGA) is promising but challenging. Existing FPGA-based ViT accelerators mainly rely on temporal architectures, which process different operators by reusing the same hardware blocks and suffer from extensive memory access overhead. Pipelined architectures, either coarse-grained or fine-grained, unroll the ViT computation spatially for memory access efficiency. However, they usually suffer from significant hardware resource constraints and pipeline bubbles induced by the global computation dependency of ViT. In this paper, we introduce HG-PIPE, a pipelined FPGA accelerator for high-throughput and low-latency ViT processing. HG-PIPE features a hybrid-grained pipeline architecture to reduce on-chip buffer cost and couples the computation dataflow and parallelism design to eliminate the pipeline bubbles. HG-PIPE further introduces careful approximations to implement both linear and non-linear operators with abundant Lookup Tables (LUTs), thus alleviating resource constraints. On a ZCU102 FPGA, HG-PIPE achieves 2.78 times better throughput and 2.52 times better resource efficiency than the prior-art accelerators, e.g., AutoViTAcc. With a VCK190 FPGA, HG-PIPE realizes end-to-end ViT acceleration on a single device and achieves 7118 images/s, which is 2.81 times faster than a V100 GPU.
Submission history
From: Guo Qingyu [view email][v1] Thu, 25 Jul 2024 08:47:40 UTC (14,741 KB)
[v2] Thu, 1 Aug 2024 08:18:57 UTC (14,741 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.