Computer Science > Artificial Intelligence
[Submitted on 23 Jul 2024]
Title:Infinite Ends from Finite Samples: Open-Ended Goal Inference as Top-Down Bayesian Filtering of Bottom-Up Proposals
View PDF HTML (experimental)Abstract:The space of human goals is tremendously vast; and yet, from just a few moments of watching a scene or reading a story, we seem to spontaneously infer a range of plausible motivations for the people and characters involved. What explains this remarkable capacity for intuiting other agents' goals, despite the infinitude of ends they might pursue? And how does this cohere with our understanding of other people as approximately rational agents? In this paper, we introduce a sequential Monte Carlo model of open-ended goal inference, which combines top-down Bayesian inverse planning with bottom-up sampling based on the statistics of co-occurring subgoals. By proposing goal hypotheses related to the subgoals achieved by an agent, our model rapidly generates plausible goals without exhaustive search, then filters out goals that would be irrational given the actions taken so far. We validate this model in a goal inference task called Block Words, where participants try to guess the word that someone is stacking out of lettered blocks. In comparison to both heuristic bottom-up guessing and exact Bayesian inference over hundreds of goals, our model better predicts the mean, variance, efficiency, and resource rationality of human goal inferences, achieving similar accuracy to the exact model at a fraction of the cognitive cost, while also explaining garden-path effects that arise from misleading bottom-up cues. Our experiments thus highlight the importance of uniting top-down and bottom-up models for explaining the speed, accuracy, and generality of human theory-of-mind.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.