Computer Science > Computation and Language
[Submitted on 1 Jul 2024 (v1), last revised 30 Mar 2025 (this version, v2)]
Title:PQCache: Product Quantization-based KVCache for Long Context LLM Inference
View PDF HTML (experimental)Abstract:As the field of Large Language Models (LLMs) continues to evolve, the context length in inference is steadily growing. Key-Value Cache (KVCache), the intermediate representations of tokens within LLM inference, has now become the primary memory bottleneck due to limited GPU memory. Current methods selectively determine suitable keys and values for self-attention computation in LLMs to address the issue. However, they either fall short in maintaining model quality or result in high serving latency. Drawing inspiration from advanced embedding retrieval techniques prevalent in the data management community, we consider the storage and retrieval of KVCache as a typical embedding retrieval problem. We propose PQCache, which employs Product Quantization (PQ) to manage KVCache, maintaining model quality while ensuring low serving latency. During the prefilling phase, we apply PQ to tokens' keys for each LLM layer and head. During the autoregressive decoding phase, we use PQ codes and centroids to approximately identify important preceding tokens, then fetch the corresponding key-value pairs for self-attention computation. Through meticulous design of overlapping and caching, we minimize any additional computation and communication overhead during both phases. Extensive experiments demonstrate that PQCache achieves both effectiveness and efficiency, with 4.60% score improvement over existing methods on InfiniteBench and low system latency in both prefilling and decoding.
Submission history
From: Hailin Zhang [view email][v1] Mon, 1 Jul 2024 13:05:42 UTC (4,289 KB)
[v2] Sun, 30 Mar 2025 08:13:50 UTC (5,949 KB)
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.