Computer Science > Robotics
[Submitted on 16 Jul 2024 (v1), last revised 19 Mar 2025 (this version, v3)]
Title:SNAIL Radar: A large-scale diverse benchmark for evaluating 4D-radar-based SLAM
View PDF HTML (experimental)Abstract:4D radars are increasingly favored for odometry and mapping of autonomous systems due to their robustness in harsh weather and dynamic environments. Existing datasets, however, often cover limited areas and are typically captured using a single platform. To address this gap, we present a diverse large-scale dataset specifically designed for 4D radar-based localization and mapping. This dataset was gathered using three different platforms: a handheld device, an e-bike, and an SUV, under a variety of environmental conditions, including clear days, nighttime, and heavy rain. The data collection occurred from September 2023 to February 2024, encompassing diverse settings such as roads in a vegetated campus and tunnels on highways. Each route was traversed multiple times to facilitate place recognition evaluations. The sensor suite included a 3D lidar, 4D radars, stereo cameras, consumer-grade IMUs, and a GNSS/INS system. Sensor data packets were synchronized to GNSS time using a two-step process including a convex-hull-based smoothing and a correlation-based correction. The reference motion for the platforms was generated by registering lidar scans to a terrestrial laser scanner (TLS) point cloud map by a lidar inertial sequential localizer which supports forward and backward processing. The backward pass enables detailed quantitative and qualitative assessments of reference motion accuracy. To demonstrate the dataset's utility, we evaluated several state-of-the-art radar-based odometry and place recognition methods, indicating existing challenges in radar-based SLAM.
Submission history
From: Jianzhu Huai [view email][v1] Tue, 16 Jul 2024 13:22:33 UTC (39,119 KB)
[v2] Mon, 22 Jul 2024 12:34:22 UTC (40,195 KB)
[v3] Wed, 19 Mar 2025 01:13:51 UTC (13,896 KB)
Current browse context:
cs.RO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.