Computer Science > Computer Vision and Pattern Recognition
[Submitted on 15 Jul 2024]
Title:Understanding the Dependence of Perception Model Competency on Regions in an Image
View PDF HTML (experimental)Abstract:While deep neural network (DNN)-based perception models are useful for many applications, these models are black boxes and their outputs are not yet well understood. To confidently enable a real-world, decision-making system to utilize such a perception model without human intervention, we must enable the system to reason about the perception model's level of competency and respond appropriately when the model is incompetent. In order for the system to make an intelligent decision about the appropriate action when the model is incompetent, it would be useful for the system to understand why the model is incompetent. We explore five novel methods for identifying regions in the input image contributing to low model competency, which we refer to as image cropping, segment masking, pixel perturbation, competency gradients, and reconstruction loss. We assess the ability of these five methods to identify unfamiliar objects, recognize regions associated with unseen classes, and identify unexplored areas in an environment. We find that the competency gradients and reconstruction loss methods show great promise in identifying regions associated with low model competency, particularly when aspects of the image that are unfamiliar to the perception model are causing this reduction in competency. Both of these methods boast low computation times and high levels of accuracy in detecting image regions that are unfamiliar to the model, allowing them to provide potential utility in decision-making pipelines. The code for reproducing our methods and results is available on GitHub: this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.