Computer Science > Computer Vision and Pattern Recognition
[Submitted on 10 Jul 2024 (v1), last revised 27 Feb 2025 (this version, v2)]
Title:Fish-Vista: A Multi-Purpose Dataset for Understanding & Identification of Traits from Images
View PDF HTML (experimental)Abstract:We introduce Fish-Visual Trait Analysis (Fish-Vista), the first organismal image dataset designed for the analysis of visual traits of aquatic species directly from images using problem formulations in computer vision. Fish-Vista contains 69,126 annotated images spanning 4,154 fish species, curated and organized to serve three downstream tasks of species classification, trait identification, and trait segmentation. Our work makes two key contributions. First, we perform a fully reproducible data processing pipeline to process images sourced from various museum collections. We annotate these images with carefully curated labels from biological databases and manual annotations to create an AI-ready dataset of visual traits, contributing to the advancement of AI in biodiversity science. Second, our proposed downstream tasks offer fertile grounds for novel computer vision research in addressing a variety of challenges such as long-tailed distributions, out-of-distribution generalization, learning with weak labels, explainable AI, and segmenting small objects. We benchmark the performance of several existing methods for our proposed tasks to expose future research opportunities in AI for biodiversity science problems involving visual traits.
Submission history
From: Kazi Sajeed Mehrab [view email][v1] Wed, 10 Jul 2024 20:10:56 UTC (20,811 KB)
[v2] Thu, 27 Feb 2025 07:06:50 UTC (23,324 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.