Electrical Engineering and Systems Science > Signal Processing
[Submitted on 7 Jul 2024 (v1), last revised 28 Aug 2024 (this version, v2)]
Title:Blind Bistatic Radar Parameter Estimation for AFDM Systems in Doubly-Dispersive Channels
View PDF HTML (experimental)Abstract:We propose a novel method for blind bistatic radar parameter estimation (RPE), which enables integrated sensing and communications (ISAC) by allowing passive (receive) base stations (BSs) to extract radar parameters (ranges and velocities of targets), without requiring knowledge of the information sent by an active (transmit) BS to its users. The contributed method is formulated with basis on the covariance of received signals, and under a generalized doubly-dispersive channel model compatible with most of the waveforms typically considered for ISAC, such as orthogonal frequency division multiplexing (OFDM), orthogonal time frequency space (OTFS) and affine frequency division multiplexing (AFDM). The original non-convex problem, which includes an $\ell_0$-norm regularization term in order to mitigate clutter, is solved not by relaxation to an $\ell_1$-norm, but by introducing an arbitrarily-tight approximation then relaxed via fractional programming (FP). Simulation results show that the performance of the proposed method approaches that of an ideal system with perfect knowledge of the transmit signal covariance with an increasing number of transmit frames.
Submission history
From: Kuranage Roche Rayan Ranasinghe [view email][v1] Sun, 7 Jul 2024 10:49:31 UTC (161 KB)
[v2] Wed, 28 Aug 2024 10:01:28 UTC (163 KB)
Current browse context:
eess.SP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.