Computer Science > Programming Languages
[Submitted on 6 Jul 2024]
Title:A Calculus for Unreachable Code
View PDFAbstract:In Racket, the LLVM IR, Rust, and other modern languages, programmers and static analyses can hint, with special annotations, that certain parts of a program are unreachable. Same as other assumptions about undefined behavior; the compiler assumes these hints are correct and transforms the program aggressively.
While compile-time transformations due to undefined behavior often perplex compiler writers and developers, we show that the essence of transformations due to unreachable code can be distilled in a surprisingly small set of simple formal rules. Specifically, following the well-established tradition of understanding linguistic phenomena through calculi, we introduce the first calculus for unreachable. Its term-rewriting rules that take advantage of unreachable fall into two groups. The first group allows the compiler to delete any code downstream of unreachable, and any effect-free code upstream of unreachable. The second group consists of rules that eliminate conditional expressions when one of their branches is unreachable. We show the correctness of the rules with a novel logical relation, and we examine how they correspond to transformations due to unreachable in Racket and LLVM.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.