Computer Science > Computer Vision and Pattern Recognition
[Submitted on 1 Jul 2024 (v1), last revised 29 Oct 2024 (this version, v2)]
Title:M$^2$IST: Multi-Modal Interactive Side-Tuning for Efficient Referring Expression Comprehension
View PDF HTML (experimental)Abstract:Referring expression comprehension (REC) is a vision-language task to locate a target object in an image based on a language expression. Fully fine-tuning general-purpose pre-trained vision-language foundation models for REC yields impressive performance but becomes increasingly costly. Parameter-efficient transfer learning (PETL) methods have shown strong performance with fewer tunable parameters. However, directly applying PETL to REC faces two challenges: (1) insufficient multi-modal interaction between pre-trained vision-language foundation models, and (2) high GPU memory usage due to gradients passing through the heavy vision-language foundation models. To this end, we present M$^2$IST: Multi-Modal Interactive Side-Tuning with M$^3$ISAs: Mixture of Multi-Modal Interactive Side-Adapters. During fine-tuning, we keep the pre-trained uni-modal encoders fixed, updating M$^3$ISAs on side networks to progressively connect them, enabling more comprehensive vision-language alignment and efficient tuning for REC. Empirical results reveal that M$^2$IST achieves an optimal balance between performance and efficiency compared to most full fine-tuning and other PETL methods. With M$^2$IST, standard transformer-based REC methods present competitive or even superior performance compared to full fine-tuning, while utilizing only 2.11\% of the tunable parameters, 39.61\% of the GPU memory, and 63.46\% of the fine-tuning time required for full fine-tuning.
Submission history
From: Xuyang Liu [view email][v1] Mon, 1 Jul 2024 09:53:53 UTC (1,235 KB)
[v2] Tue, 29 Oct 2024 12:57:42 UTC (1,474 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.