Computer Science > Multimedia
[Submitted on 30 Jun 2024]
Title:Revisiting Vision-Language Features Adaptation and Inconsistency for Social Media Popularity Prediction
View PDF HTML (experimental)Abstract:Social media popularity (SMP) prediction is a complex task involving multi-modal data integration. While pre-trained vision-language models (VLMs) like CLIP have been widely adopted for this task, their effectiveness in capturing the unique characteristics of social media content remains unexplored. This paper critically examines the applicability of CLIP-based features in SMP prediction, focusing on the overlooked phenomenon of semantic inconsistency between images and text in social media posts. Through extensive analysis, we demonstrate that this inconsistency increases with post popularity, challenging the conventional use of VLM features. We provide a comprehensive investigation of semantic inconsistency across different popularity intervals and analyze the impact of VLM feature adaptation on SMP tasks. Our experiments reveal that incorporating inconsistency measures and adapted text features significantly improves model performance, achieving an SRC of 0.729 and an MAE of 1.227. These findings not only enhance SMP prediction accuracy but also provide crucial insights for developing more targeted approaches in social media analysis.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.