Computer Science > Computation and Language
[Submitted on 29 Jun 2024 (v1), last revised 24 Nov 2024 (this version, v3)]
Title:It's Morphing Time: Unleashing the Potential of Multiple LLMs via Multi-objective Optimization
View PDF HTML (experimental)Abstract:In this paper, we introduce a novel approach for addressing the multi-objective optimization problem in large language model merging via black-box multi-objective optimization algorithms. The goal of model merging is to combine multiple models, each excelling in different tasks, into a single model that outperforms any of the individual source models. However, model merging faces two significant challenges: First, existing methods rely heavily on human knowledge or intuition. Second, it's difficult to obtain the great model merging configuration in limited evaluations. To address these challenges, we formalize model merging as a multi-objective optimization problem and propose an automated optimization approach named MM-MO. This method leverages multi-objective optimization algorithms to autonomously search for optimal merging configurations across various tasks, alleviating the need for human intervention. In MM-MO, a weak-to-strong method is employed to enhance the acquisition function, allowing previously evaluated superior configurations to guide the search for new ones. Meanwhile, Fisher information is applied to screen these configurations, increasing the possibility of identifying high-quality merging configuration. Additionally, we designed a sparsity metric as an additional optimization objective to enhance the model's generalization performance across different tasks. We conducted comprehensive experiments with other mainstream model merging methods, demonstrating that the proposed MM-MO algorithm is competitive and effective in achieving high-quality model merging.
Submission history
From: Zixiang Di [view email][v1] Sat, 29 Jun 2024 16:34:23 UTC (183 KB)
[v2] Mon, 12 Aug 2024 14:06:48 UTC (3,237 KB)
[v3] Sun, 24 Nov 2024 14:11:56 UTC (2,820 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.