Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 5 Jun 2024]
Title:One Queue Is All You Need: Resolving Head-of-Line Blocking in Large Language Model Serving
View PDF HTML (experimental)Abstract:$ $Large language models (LLMs) have become an increasingly important workload for cloud providers catering to both enterprise and consumer applications. LLM inference requests from these applications have end-to-end latency SLOs that must be adhered to in production settings. However, existing LLM serving systems focus on optimization objectives such as request serving throughput or request execution latency rather than the end-to-end latency SLOs. Achieving end-to-end SLOs for latency-sensitive requests is challenging due to head-of-line (HOL) blocking in the request queue, which results from bursty arrival rates and insufficient resources.
To address the above challenge, we propose QLM, a multi-model queue management framework for LLM serving. QLM uses stochastic programming to orchestrate the actions of multiple LLM Serving Operations (LSOs) to reduce HOL blocking and maximize SLO attainment. Specifically, QLM uses the following LSOs: model swapping, request eviction, GPU-CPU state swapping, load balancing, and warm model start. Evaluation on heterogeneous GPU devices and models with real-world LLM serving dataset shows that QLM improves SLO attainment by 40-90% and throughput by 20-400% while maintaining or improving device utilization compared to other state-of-the-art LLM serving systems.
Current browse context:
cs.DC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.