Computer Science > Hardware Architecture
[Submitted on 27 Jun 2024]
Title:MegIS: High-Performance, Energy-Efficient, and Low-Cost Metagenomic Analysis with In-Storage Processing
View PDF HTML (experimental)Abstract:Metagenomics has led to significant advances in many fields. Metagenomic analysis commonly involves the key tasks of determining the species present in a sample and their relative abundances. These tasks require searching large metagenomic databases. Metagenomic analysis suffers from significant data movement overhead due to moving large amounts of low-reuse data from the storage system. In-storage processing can be a fundamental solution for reducing this overhead. However, designing an in-storage processing system for metagenomics is challenging because existing approaches to metagenomic analysis cannot be directly implemented in storage effectively due to the hardware limitations of modern SSDs. We propose MegIS, the first in-storage processing system designed to significantly reduce the data movement overhead of the end-to-end metagenomic analysis pipeline. MegIS is enabled by our lightweight design that effectively leverages and orchestrates processing inside and outside the storage system. We address in-storage processing challenges for metagenomics via specialized and efficient 1) task partitioning, 2) data/computation flow coordination, 3) storage technology-aware algorithmic optimizations, 4) data mapping, and 5) lightweight in-storage accelerators. MegIS's design is flexible, capable of supporting different types of metagenomic input datasets, and can be integrated into various metagenomic analysis pipelines. Our evaluation shows that MegIS outperforms the state-of-the-art performance- and accuracy-optimized software metagenomic tools by 2.7$\times$-37.2$\times$ and 6.9$\times$-100.2$\times$, respectively, while matching the accuracy of the accuracy-optimized tool. MegIS achieves 1.5$\times$-5.1$\times$ speedup compared to the state-of-the-art metagenomic hardware-accelerated (using processing-in-memory) tool, while achieving significantly higher accuracy.
Submission history
From: Nika Mansouri Ghiasi [view email][v1] Thu, 27 Jun 2024 11:52:17 UTC (741 KB)
Current browse context:
cs.AR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.