Computer Science > Computer Vision and Pattern Recognition
[Submitted on 24 May 2024]
Title:Planted: a dataset for planted forest identification from multi-satellite time series
View PDF HTML (experimental)Abstract:Protecting and restoring forest ecosystems is critical for biodiversity conservation and carbon sequestration. Forest monitoring on a global scale is essential for prioritizing and assessing conservation efforts. Satellite-based remote sensing is the only viable solution for providing global coverage, but to date, large-scale forest monitoring is limited to single modalities and single time points. In this paper, we present a dataset consisting of data from five public satellites for recognizing forest plantations and planted tree species across the globe. Each satellite modality consists of a multi-year time series. The dataset, named \PlantD, includes over 2M examples of 64 tree label classes (46 genera and 40 species), distributed among 41 countries. This dataset is released to foster research in forest monitoring using multimodal, multi-scale, multi-temporal data sources. Additionally, we present initial baseline results and evaluate modality fusion and data augmentation approaches for this dataset.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.