Computer Science > Cryptography and Security
[Submitted on 20 Jun 2024]
Title:EnTruth: Enhancing the Traceability of Unauthorized Dataset Usage in Text-to-image Diffusion Models with Minimal and Robust Alterations
View PDF HTML (experimental)Abstract:Generative models, especially text-to-image diffusion models, have significantly advanced in their ability to generate images, benefiting from enhanced architectures, increased computational power, and large-scale datasets. While the datasets play an important role, their protection has remained as an unsolved issue. Current protection strategies, such as watermarks and membership inference, are either in high poison rate which is detrimental to image quality or suffer from low accuracy and robustness. In this work, we introduce a novel approach, EnTruth, which Enhances Traceability of unauthorized dataset usage utilizing template memorization. By strategically incorporating the template memorization, EnTruth can trigger the specific behavior in unauthorized models as the evidence of infringement. Our method is the first to investigate the positive application of memorization and use it for copyright protection, which turns a curse into a blessing and offers a pioneering perspective for unauthorized usage detection in generative models. Comprehensive experiments are provided to demonstrate its effectiveness in terms of data-alteration rate, accuracy, robustness and generation quality.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.