Computer Science > Artificial Intelligence
[Submitted on 17 Jun 2024 (v1), last revised 15 Oct 2024 (this version, v3)]
Title:Enhancing and Assessing Instruction-Following with Fine-Grained Instruction Variants
View PDF HTML (experimental)Abstract:The effective alignment of Large Language Models (LLMs) with precise instructions is essential for their application in diverse real-world scenarios. Current methods focus on enhancing the diversity and complexity of training and evaluation samples, yet they fall short in accurately assessing LLMs' ability to follow similar instruction variants. We introduce an effective data augmentation technique DeMoRecon that decomposes complex instructions into simpler sub-components, modifies these, and reconstructs them into new variants, thereby preserves the original instruction's context and complexity while introducing variability, which is critical for training and evaluating LLMs' instruction-following precision. Based on DeMoRecon, we developed the FGIV dataset which contains fine-grained instruction variants of 1,773 seed instructions to both fine-tune and evaluate LLMs. Our findings show that LLMs fine-tuned with FGIV will gain significant performance boost on both ours and commonly used instructions-following benchmarks.
Submission history
From: Jiuding Yang [view email][v1] Mon, 17 Jun 2024 08:08:11 UTC (7,362 KB)
[v2] Wed, 31 Jul 2024 10:18:50 UTC (7,362 KB)
[v3] Tue, 15 Oct 2024 23:26:18 UTC (7,364 KB)
Current browse context:
cs.AI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.