Electrical Engineering and Systems Science > Audio and Speech Processing
[Submitted on 16 Jun 2024 (v1), last revised 24 Sep 2024 (this version, v2)]
Title:Revisiting and Improving Scoring Fusion for Spoofing-aware Speaker Verification Using Compositional Data Analysis
View PDF HTML (experimental)Abstract:Fusing outputs from automatic speaker verification (ASV) and spoofing countermeasure (CM) is expected to make an integrated system robust to zero-effort imposters and synthesized spoofing attacks. Many score-level fusion methods have been proposed, but many remain heuristic. This paper revisits score-level fusion using tools from decision theory and presents three main findings. First, fusion by summing the ASV and CM scores can be interpreted on the basis of compositional data analysis, and score calibration before fusion is essential. Second, the interpretation leads to an improved fusion method that linearly combines the log-likelihood ratios of ASV and CM. However, as the third finding reveals, this linear combination is inferior to a non-linear one in making optimal decisions. The outcomes of these findings, namely, the score calibration before fusion, improved linear fusion, and better non-linear fusion, were found to be effective on the SASV challenge database.
Submission history
From: Xin Wang [view email][v1] Sun, 16 Jun 2024 08:10:23 UTC (906 KB)
[v2] Tue, 24 Sep 2024 14:34:32 UTC (906 KB)
Current browse context:
eess.AS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.