Computer Science > Hardware Architecture
[Submitted on 13 Jun 2024]
Title:ONNX-to-Hardware Design Flow for Adaptive Neural-Network Inference on FPGAs
View PDF HTML (experimental)Abstract:The challenges involved in executing neural networks (NNs) at the edge include providing diversity, flexibility, and sustainability. That implies, for instance, supporting evolving applications and algorithms energy-efficiently. Using hardware or software accelerators can deliver fast and efficient computation of the NNs, while flexibility can be exploited to support long-term adaptivity. Nonetheless, handcrafting an NN for a specific device, despite the possibility of leading to an optimal solution, takes time and experience, and that's why frameworks for hardware accelerators are being developed. This work, starting from a preliminary semi-integrated ONNX-to-hardware toolchain [21], focuses on enabling approximate computing leveraging the distinctive ability of the original toolchain to favor adaptivity. The goal is to allow lightweight adaptable NN inference on FPGAs at the edge.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.