Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 11 Jun 2024]
Title:TraceMesh: Scalable and Streaming Sampling for Distributed Traces
View PDF HTML (experimental)Abstract:Distributed tracing serves as a fundamental element in the monitoring of cloud-based and datacenter systems. It provides visibility into the full lifecycle of a request or operation across multiple services, which is essential for understanding system dependencies and performance bottlenecks. To mitigate computational and storage overheads, most tracing frameworks adopt a uniform sampling strategy, which inevitably captures overlapping and redundant information. More advanced methods employ learning-based approaches to bias the sampling toward more informative traces. However, existing methods fall short of considering the high-dimensional and dynamic nature of trace data, which is essential for the production deployment of trace sampling. To address these practical challenges, in this paper we present TraceMesh, a scalable and streaming sampler for distributed traces. TraceMesh employs Locality-Sensitivity Hashing (LSH) to improve sampling efficiency by projecting traces into a low-dimensional space while preserving their similarity. In this process, TraceMesh accommodates previously unseen trace features in a unified and streamlined way. Subsequently, TraceMesh samples traces through evolving clustering, which dynamically adjusts the sampling decision to avoid over-sampling of recurring traces. The proposed method is evaluated with trace data collected from both open-source microservice benchmarks and production service systems. Experimental results demonstrate that TraceMesh outperforms state-of-the-art methods by a significant margin in both sampling accuracy and efficiency.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.