Computer Science > Cryptography and Security
[Submitted on 5 Jun 2024]
Title:Reconstructing training data from document understanding models
View PDF HTML (experimental)Abstract:Document understanding models are increasingly employed by companies to supplant humans in processing sensitive documents, such as invoices, tax notices, or even ID cards. However, the robustness of such models to privacy attacks remains vastly unexplored. This paper presents CDMI, the first reconstruction attack designed to extract sensitive fields from the training data of these models. We attack LayoutLM and BROS architectures, demonstrating that an adversary can perfectly reconstruct up to 4.1% of the fields of the documents used for fine-tuning, including some names, dates, and invoice amounts up to six-digit numbers. When our reconstruction attack is combined with a membership inference attack, our attack accuracy escalates to 22.5%. In addition, we introduce two new end-to-end metrics and evaluate our approach under various conditions: unimodal or bimodal data, LayoutLM or BROS backbones, four fine-tuning tasks, and two public datasets (FUNSD and SROIE). We also investigate the interplay between overfitting, predictive performance, and susceptibility to our attack. We conclude with a discussion on possible defenses against our attack and potential future research directions to construct robust document understanding models.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.