Computer Science > Machine Learning
[Submitted on 5 Jun 2024]
Title:Quantifying Task Priority for Multi-Task Optimization
View PDF HTML (experimental)Abstract:The goal of multi-task learning is to learn diverse tasks within a single unified network. As each task has its own unique objective function, conflicts emerge during training, resulting in negative transfer among them. Earlier research identified these conflicting gradients in shared parameters between tasks and attempted to realign them in the same direction. However, we prove that such optimization strategies lead to sub-optimal Pareto solutions due to their inability to accurately determine the individual contributions of each parameter across various tasks. In this paper, we propose the concept of task priority to evaluate parameter contributions across different tasks. To learn task priority, we identify the type of connections related to links between parameters influenced by task-specific losses during backpropagation. The strength of connections is gauged by the magnitude of parameters to determine task priority. Based on these, we present a new method named connection strength-based optimization for multi-task learning which consists of two phases. The first phase learns the task priority within the network, while the second phase modifies the gradients while upholding this priority. This ultimately leads to finding new Pareto optimal solutions for multiple tasks. Through extensive experiments, we show that our approach greatly enhances multi-task performance in comparison to earlier gradient manipulation methods.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.