Mathematics > Numerical Analysis
[Submitted on 4 Jun 2024]
Title:Automatic nonstationary anisotropic Tikhonov regularization through bilevel optimization
View PDF HTML (experimental)Abstract:Regularization techniques are necessary to compute meaningful solutions to discrete ill-posed inverse problems. The well-known 2-norm Tikhonov regularization method equipped with a discretization of the gradient operator as regularization operator penalizes large gradient components of the solution to overcome instabilities. However, this method is homogeneous, i.e., it does not take into account the orientation of the regularized solution and therefore tends to smooth the desired structures, textures and discontinuities, which often contain important information. If the local orientation field of the solution is known, a possible way to overcome this issue is to implement local anisotropic regularization by penalizing weighted directional derivatives. In this paper, considering problems that are inherently two-dimensional, we propose to automatically and simultaneously recover the regularized solution and the local orientation parameters (used to define the anisotropic regularization term) by solving a bilevel optimization problem. Specifically, the lower level problem is Tikhonov regularization equipped with local anisotropic regularization, while the objective function of the upper level problem encodes some natural assumptions about the local orientation parameters and the Tikhonov regularization parameter. Application of the proposed algorithm to a variety of inverse problems in imaging (such as denoising, deblurring, tomography and Dix inversion), with both real and synthetic data, shows its effectiveness and robustness.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.