Computer Science > Robotics
[Submitted on 1 Jun 2024]
Title:Learning to Play Air Hockey with Model-Based Deep Reinforcement Learning
View PDF HTML (experimental)Abstract:In the context of addressing the Robot Air Hockey Challenge 2023, we investigate the applicability of model-based deep reinforcement learning to acquire a policy capable of autonomously playing air hockey. Our agents learn solely from sparse rewards while incorporating self-play to iteratively refine their behaviour over time. The robotic manipulator is interfaced using continuous high-level actions for position-based control in the Cartesian plane while having partial observability of the environment with stochastic transitions. We demonstrate that agents are prone to overfitting when trained solely against a single playstyle, highlighting the importance of self-play for generalization to novel strategies of unseen opponents. Furthermore, the impact of the imagination horizon is explored in the competitive setting of the highly dynamic game of air hockey, with longer horizons resulting in more stable learning and better overall performance.
Current browse context:
cs.RO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.