Nonlinear Sciences > Cellular Automata and Lattice Gases
[Submitted on 31 May 2024]
Title:On complexity of colloid cellular automata
View PDF HTML (experimental)Abstract:The colloid cellular automata do not imitate the physical structure of colloids but are governed by logical functions derived from the colloids. We analyse the space-time complexity of Boolean circuits derived from the electrical responses of colloids: ZnO (zinc oxide, an inorganic compound also known as calamine or zinc white, which naturally occurs as the mineral zincite), proteinoids (microspheres and crystals of thermal abiotic proteins), and combinations thereof to electrical stimulation. To extract Boolean circuits from colloids, we send all possible configurations of two-, four-, and eight-bit binary strings, encoded as electrical potential values, to the colloids, record their responses, and thereby infer the Boolean functions they implement. We map the discovered functions onto the cell-state transition rules of cellular automata (arrays of binary state machines that update their states synchronously according to the same rule) -- the colloid cellular automata. We then analyse the phenomenology of the space-time configurations of the automata and evaluate their complexity using measures such as compressibility, Shannon entropy, Simpson diversity, and expressivity. A hierarchy of phenomenological and measurable space-time complexity is constructed.
Submission history
From: Andrew Adamatzky [view email][v1] Fri, 31 May 2024 19:59:18 UTC (4,735 KB)
Current browse context:
nlin.CG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.