Computer Science > Cryptography and Security
[Submitted on 28 May 2024 (v1), last revised 12 Aug 2024 (this version, v2)]
Title:Asymptotic utility of spectral anonymization
View PDF HTML (experimental)Abstract:In the contemporary data landscape characterized by multi-source data collection and third-party sharing, ensuring individual privacy stands as a critical concern. While various anonymization methods exist, their utility preservation and privacy guarantees remain challenging to quantify. In this work, we address this gap by studying the utility and privacy of the spectral anonymization (SA) algorithm, particularly in an asymptotic framework. Unlike conventional anonymization methods that directly modify the original data, SA operates by perturbing the data in a spectral basis and subsequently reverting them to their original basis. Alongside the original version $\mathcal{P}$-SA, employing random permutation transformation, we introduce two novel SA variants: $\mathcal{J}$-spectral anonymization and $\mathcal{O}$-spectral anonymization, which employ sign-change and orthogonal matrix transformations, respectively. We show how well, under some practical assumptions, these SA algorithms preserve the first and second moments of the original data. Our results reveal, in particular, that the asymptotic efficiency of all three SA algorithms in covariance estimation is exactly 50% when compared to the original data. To assess the applicability of these asymptotic results in practice, we conduct a simulation study with finite data and also evaluate the privacy protection offered by these algorithms using distance-based record linkage. Our research reveals that while no method exhibits clear superiority in finite-sample utility, $\mathcal{O}$-SA distinguishes itself for its exceptional privacy preservation, never producing identical records, albeit with increased computational complexity. Conversely, $\mathcal{P}$-SA emerges as a computationally efficient alternative, demonstrating unmatched efficiency in mean estimation.
Submission history
From: Katariina Perkonoja [view email][v1] Tue, 28 May 2024 07:53:20 UTC (2,271 KB)
[v2] Mon, 12 Aug 2024 06:42:34 UTC (201 KB)
Current browse context:
cs.CR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.