Computer Science > Software Engineering
[Submitted on 31 May 2024]
Title:Formal Verification of Ecosystem Restoration Requirements using UML and Alloy
View PDF HTML (experimental)Abstract:United Nations have declared the current decade (2021-2030) as the "UN Decade on Ecosystem Restoration" to join R\&D forces to fight against the ongoing environmental crisis. Given the ongoing degradation of earth ecosystems and the related crucial services that they offer to the human society, ecosystem restoration has become a major society-critical issue. It is required to develop rigorously software applications managing ecosystem restoration. Reliable models of ecosystems and restoration goals are necessary. This paper proposes a rigorous approach for ecosystem requirements modeling using formal methods from a model-driven software engineering point of view. The authors describe the main concepts at stake with a metamodel in UML and introduce a formalization of this metamodel in Alloy. The formal model is executed with Alloy Analyzer, and safety and liveness properties are checked against it. This approach helps ensuring that ecosystem specifications are reliable and that the specified ecosystem meets the desired restoration goals, seen in our approach as liveness and safety properties. The concepts and activities of the approach are illustrated with CRESTO, a real-world running example of a restored Costa Rican ecosystem.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.