Computer Science > Computer Vision and Pattern Recognition
[Submitted on 29 May 2024]
Title:WTTFNet: A Weather-Time-Trajectory Fusion Network for Pedestrian Trajectory Prediction in Urban Complex
View PDFAbstract:Pedestrian trajectory modelling in an urban complex is challenging because pedestrians can have many possible destinations, such as shops, escalators, and attractions. Moreover, weather and time-of-day may affect pedestrian behavior. In this paper, a new weather-time-trajectory fusion network (WTTFNet) is proposed to improve the performance of baseline deep neural network architecture. By incorporating weather and time-of-day information as an embedding structure, a novel WTTFNet based on gate multimodal unit is used to fuse the multimodal information and deep representation of trajectories. A joint loss function based on focal loss is used to co-optimize both the deep trajectory features and final classifier, which helps to improve the accuracy in predicting the intended destination of pedestrians and hence the trajectories under possible scenarios of class imbalances. Experimental results using the Osaka Asia and Pacific Trade Center (ATC) dataset shows improved performance of the proposed approach over state-of-the-art algorithms by 23.67% increase in classification accuracy, 9.16% and 7.07% reduction of average and final displacement error. The proposed approach may serve as an attractive approach for improving existing baseline trajectory prediction models when they are applied to scenarios with influences of weather-time conditions. It can be employed in numerous applications such as pedestrian facility engineering, public space development and technology-driven retail.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.