Computer Science > Machine Learning
[Submitted on 28 May 2024]
Title:Offline Oracle-Efficient Learning for Contextual MDPs via Layerwise Exploration-Exploitation Tradeoff
View PDF HTML (experimental)Abstract:Motivated by the recent discovery of a statistical and computational reduction from contextual bandits to offline regression (Simchi-Levi and Xu, 2021), we address the general (stochastic) Contextual Markov Decision Process (CMDP) problem with horizon H (as known as CMDP with H layers). In this paper, we introduce a reduction from CMDPs to offline density estimation under the realizability assumption, i.e., a model class M containing the true underlying CMDP is provided in advance. We develop an efficient, statistically near-optimal algorithm requiring only O(HlogT) calls to an offline density estimation algorithm (or oracle) across all T rounds of interaction. This number can be further reduced to O(HloglogT) if T is known in advance. Our results mark the first efficient and near-optimal reduction from CMDPs to offline density estimation without imposing any structural assumptions on the model class. A notable feature of our algorithm is the design of a layerwise exploration-exploitation tradeoff tailored to address the layerwise structure of CMDPs. Additionally, our algorithm is versatile and applicable to pure exploration tasks in reward-free reinforcement learning.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.