Quantum Physics
[Submitted on 27 May 2024]
Title:The MQT Handbook: A Summary of Design Automation Tools and Software for Quantum Computing
View PDFAbstract:Quantum computers are becoming a reality and numerous quantum computing applications with a near-term perspective (e.g., for finance, chemistry, machine learning, and optimization) and with a long-term perspective (e.g., for cryptography or unstructured search) are currently being investigated. However, designing and realizing potential applications for these devices in a scalable fashion requires automated, efficient, and user-friendly software tools that cater to the needs of end users, engineers, and physicists at every level of the entire quantum software stack. Many of the problems to be tackled in that regard are similar to design problems from the classical realm for which sophisticated design automation tools have been developed in the previous decades.
The Munich Quantum Toolkit (MQT) is a collection of software tools for quantum computing developed by the Chair for Design Automation at the Technical University of Munich which explicitly utilizes this design automation expertise. Our overarching objective is to provide solutions for design tasks across the entire quantum software stack. This entails high-level support for end users in realizing their applications, efficient methods for the classical simulation, compilation, and verification of quantum circuits, tools for quantum error correction, support for physical design, and more. These methods are supported by corresponding data structures (such as decision diagrams) and core methods (such as SAT encodings/solvers). All of the developed tools are available as open-source implementations and are hosted on this https URL.
Current browse context:
quant-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.