Computer Science > Data Structures and Algorithms
[Submitted on 19 May 2024]
Title:String 2-Covers with No Length Restrictions
View PDF HTML (experimental)Abstract:A $\lambda$-cover of a string $S$ is a set of strings $\{C_i\}_1^\lambda$ such that every index in $S$ is contained in an occurrence of at least one string $C_i$. The existence of a $1$-cover defines a well-known class of quasi-periodic strings. Quasi-periodicity can be decided in linear time, and all $1$-covers of a string can be reported in linear time plus the size of the output. Since in general it is NP-complete to decide whether a string has a $\lambda$-cover, the natural next step is the development of efficient algorithms for $2$-covers. Radoszewski and Straszyński [ESA 2020] analysed the particular case where the strings in a $2$-cover must be of the same length. They provided an algorithm that reports all such $2$-covers of $S$ in time near-linear in $|S|$ and in the size of the output.
In this work, we consider $2$-covers in full generality. Since every length-$n$ string has $\Omega(n^2)$ trivial $2$-covers (every prefix and suffix of total length at least $n$ constitute such a $2$-cover), we state the reporting problem as follows: given a string $S$ and a number $m$, report all $2$-covers $\{C_1,C_2\}$ of $S$ with length $|C_1|+|C_2|$ upper bounded by $m$. We present an $\tilde{O}(n + Output)$ time algorithm solving this problem, with Output being the size of the output. This algorithm admits a simpler modification that finds a $2$-cover of minimum length. We also provide an $\tilde{O}(n)$ time construction of a $2$-cover oracle which, given two substrings $C_1,C_2$ of $S$, reports in poly-logarithmic time whether $\{C_1,C_2\}$ is a $2$-cover of $S$.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.