Computer Science > Computer Science and Game Theory
[Submitted on 17 May 2024]
Title:Differentially Private Machine Learning-powered Combinatorial Auction Design
View PDF HTML (experimental)Abstract:We present a new approach to machine learning-powered combinatorial auctions, which is based on the principles of Differential Privacy. Our methodology guarantees that the auction mechanism is truthful, meaning that rational bidders have the incentive to reveal their true valuation functions. We achieve this by inducing truthfulness in the auction dynamics, ensuring that bidders consistently provide accurate information about their valuation functions.
Our method not only ensures truthfulness but also preserves the efficiency of the original auction. This means that if the initial auction outputs an allocation with high social welfare, our modified truthful version of the auction will also achieve high social welfare. We use techniques from Differential Privacy, such as the Exponential Mechanism, to achieve these results. Additionally, we examine the application of differential privacy in auctions across both asymptotic and non-asymptotic regimes.
Submission history
From: Mahdi Jafari Siavoshani [view email][v1] Fri, 17 May 2024 08:36:55 UTC (124 KB)
Current browse context:
cs.GT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.