Computer Science > Software Engineering
[Submitted on 17 May 2024]
Title:Defect Category Prediction Based on Multi-Source Domain Adaptation
View PDFAbstract:In recent years, defect prediction techniques based on deep learning have become a prominent research topic in the field of software engineering. These techniques can identify potential defects without executing the code. However, existing approaches mostly concentrate on determining the presence of defects at the method-level code, lacking the ability to precisely classify specific defect categories. Consequently, this undermines the efficiency of developers in locating and rectifying defects. Furthermore, in practical software development, new projects often lack sufficient defect data to train high-accuracy deep learning models. Models trained on historical data from existing projects frequently struggle to achieve satisfactory generalization performance on new projects. Hence, this paper initially reformulates the traditional binary defect prediction task into a multi-label classification problem, employing defect categories described in the Common Weakness Enumeration (CWE) as fine-grained predictive labels. To enhance the model performance in cross-project scenarios, this paper proposes a multi-source domain adaptation framework that integrates adversarial training and attention mechanisms. Specifically, the proposed framework employs adversarial training to mitigate domain (i.e., software projects) discrepancies, and further utilizes domain-invariant features to capture feature correlations between each source domain and the target domain. Simultaneously, the proposed framework employs a weighted maximum mean discrepancy as an attention mechanism to minimize the representation distance between source and target domain features, facilitating model in learning more domain-independent features. The experiments on 8 real-world open-source projects show that the proposed approach achieves significant performance improvements compared to state-of-the-art baselines.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.