Computer Science > Computer Vision and Pattern Recognition
[Submitted on 17 May 2024 (v1), last revised 18 Sep 2024 (this version, v2)]
Title:Multi-scale Semantic Prior Features Guided Deep Neural Network for Urban Street-view Image
View PDFAbstract:Street-view image has been widely applied as a crucial mobile mapping data source. The inpainting of street-view images is a critical step for street-view image processing, not only for the privacy protection, but also for the urban environment mapping applications. This paper presents a novel Deep Neural Network (DNN), multi-scale semantic prior Feature guided image inpainting Network (MFN) for inpainting street-view images, which generate static street-view images without moving objects (e.g., pedestrians, vehicles). To enhance global context understanding, a semantic prior prompter is introduced to learn rich semantic priors from large pre-trained model. We design the prompter by stacking multiple Semantic Pyramid Aggregation (SPA) modules, capturing a broad range of visual feature patterns. A semantic-enhanced image generator with a decoder is proposed that incorporates a novel cascaded Learnable Prior Transferring (LPT) module at each scale level. For each decoder block, an attention transfer mechanism is applied to capture long-term dependencies, and the semantic prior features are fused with the image features to restore plausible structure in an adaptive manner. Additionally, a background-aware data processing scheme is adopted to prevent the generation of hallucinated objects within holes. Experiments on Apolloscapes and Cityscapes datasets demonstrate better performance than state-of-the-art methods, with MAE, and LPIPS showing improvements of about 9.5% and 41.07% respectively. Visual comparison survey among multi-group person is also conducted to provide performance evaluation, and the results suggest that the proposed MFN offers a promising solution for privacy protection and generate more reliable scene for urban applications with street-view images.
Submission history
From: Jianshun Zeng [view email][v1] Fri, 17 May 2024 03:02:18 UTC (13,198 KB)
[v2] Wed, 18 Sep 2024 23:11:59 UTC (1,620 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.