Computer Science > Data Structures and Algorithms
[Submitted on 11 May 2024 (v1), last revised 6 Jan 2025 (this version, v3)]
Title:Towards Metric DBSCAN: Exact, Approximate, and Streaming Algorithms
View PDF HTML (experimental)Abstract:DBSCAN is a popular density-based clustering algorithm that has many different applications in practice. However, the running time of DBSCAN in high-dimensional space or general metric space ({\em e.g.,} clustering a set of texts by using edit distance) can be as large as quadratic in the input size. Moreover, most of existing accelerating techniques for DBSCAN are only available for low-dimensional Euclidean space. In this paper, we study the DBSCAN problem under the assumption that the inliers (the core points and border points) have a low intrinsic dimension (which is a realistic assumption for many high-dimensional applications), where the outliers can locate anywhere in the space without any assumption. First, we propose a $k$-center clustering based algorithm that can reduce the time-consuming labeling and merging tasks of DBSCAN to be linear. Further, we propose a linear time approximate DBSCAN algorithm, where the key idea is building a novel small-size summary for the core points. Also, our algorithm can be efficiently implemented for streaming data and the required memory is independent of the input size. Finally, we conduct our experiments and compare our algorithms with several popular DBSCAN algorithms. The experimental results suggest that our proposed approach can significantly reduce the computational complexity in practice.
Submission history
From: Shihong Song [view email][v1] Sat, 11 May 2024 03:58:19 UTC (13,832 KB)
[v2] Thu, 5 Dec 2024 10:47:13 UTC (15,226 KB)
[v3] Mon, 6 Jan 2025 08:07:32 UTC (14,741 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.