Computer Science > Cryptography and Security
[Submitted on 9 May 2024]
Title:Protocols to Code: Formal Verification of a Next-Generation Internet Router
View PDF HTML (experimental)Abstract:We present the first formally-verified Internet router, which is part of the SCION Internet architecture. SCION routers run a cryptographic protocol for secure packet forwarding in an adversarial environment. We verify both the protocol's network-wide security properties and low-level properties of its implementation. More precisely, we develop a series of protocol models by refinement in Isabelle/HOL and we use an automated program verifier to prove that the router's Go code satisfies memory safety, crash freedom, freedom from data races, and adheres to the protocol model. Both verification efforts are soundly linked together. Our work demonstrates the feasibility of coherently verifying a critical network component from high-level protocol models down to performance-optimized production code, developed by an independent team. In the process, we uncovered critical bugs in both the protocol and its implementation, which were confirmed by the code developers, and we strengthened the protocol's security properties. This paper explains our approach, summarizes the main results, and distills lessons for the design and implementation of verifiable systems, for the handling of continuous changes, and for the verification techniques and tools employed.
Submission history
From: João Carlos Mendes Pereira [view email][v1] Thu, 9 May 2024 19:57:59 UTC (1,997 KB)
Current browse context:
cs.CR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.