Computer Science > Computer Vision and Pattern Recognition
[Submitted on 5 May 2024 (v1), last revised 29 Nov 2024 (this version, v3)]
Title:Efficient Text-driven Motion Generation via Latent Consistency Training
View PDF HTML (experimental)Abstract:Text-driven human motion generation based on diffusion strategies establishes a reliable foundation for multimodal applications in human-computer interactions. However, existing advances face significant efficiency challenges due to the substantial computational overhead of iteratively solving for nonlinear reverse diffusion trajectories during the inference phase. To this end, we propose the motion latent consistency training framework (MLCT), which precomputes reverse diffusion trajectories from raw data in the training phase and enables few-step or single-step inference via self-consistency constraints in the inference phase. Specifically, a motion autoencoder with quantization constraints is first proposed for constructing concise and bounded solution distributions for motion diffusion processes. Subsequently, a classifier-free guidance format is constructed via an additional unconditional loss function to accomplish the precomputation of conditional diffusion trajectories in the training phase. Finally, a clustering guidance module based on the K-nearest-neighbor algorithm is developed for the chain-conduction optimization mechanism of self-consistency constraints, which provides additional references of solution distributions at a small query cost. By combining these enhancements, we achieve stable and consistency training in non-pixel modality and latent representation spaces. Benchmark experiments demonstrate that our method significantly outperforms traditional consistency distillation methods with reduced training cost and enhances the consistency model to perform comparably to state-of-the-art models with lower inference costs.
Submission history
From: Mengxian Hu [view email][v1] Sun, 5 May 2024 02:11:57 UTC (3,315 KB)
[v2] Sat, 25 May 2024 05:01:20 UTC (1,983 KB)
[v3] Fri, 29 Nov 2024 16:03:59 UTC (3,925 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.