Computer Science > Machine Learning
[Submitted on 24 Apr 2024]
Title:An Element-Wise Weights Aggregation Method for Federated Learning
View PDF HTML (experimental)Abstract:Federated learning (FL) is a powerful Machine Learning (ML) paradigm that enables distributed clients to collaboratively learn a shared global model while keeping the data on the original device, thereby preserving privacy. A central challenge in FL is the effective aggregation of local model weights from disparate and potentially unbalanced participating clients. Existing methods often treat each client indiscriminately, applying a single proportion to the entire local model. However, it is empirically advantageous for each weight to be assigned a specific proportion. This paper introduces an innovative Element-Wise Weights Aggregation Method for Federated Learning (EWWA-FL) aimed at optimizing learning performance and accelerating convergence speed. Unlike traditional FL approaches, EWWA-FL aggregates local weights to the global model at the level of individual elements, thereby allowing each participating client to make element-wise contributions to the learning process. By taking into account the unique dataset characteristics of each client, EWWA-FL enhances the robustness of the global model to different datasets while also achieving rapid convergence. The method is flexible enough to employ various weighting strategies. Through comprehensive experiments, we demonstrate the advanced capabilities of EWWA-FL, showing significant improvements in both accuracy and convergence speed across a range of backbones and benchmarks.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.