Computer Science > Cryptography and Security
[Submitted on 22 Apr 2024]
Title:Modelling Technique for GDPR-compliance: Toward a Comprehensive Solution
View PDF HTML (experimental)Abstract:Data-driven applications and services have been increasingly deployed in all aspects of life including healthcare and medical services in which a huge amount of personal data is collected, aggregated, and processed in a centralised server from various sources. As a consequence, preserving the data privacy and security of these applications is of paramount importance. Since May 2018, the new data protection legislation in the EU/UK, namely the General Data Protection Regulation (GDPR), has come into force and this has called for a critical need for modelling compliance with the GDPR's sophisticated requirements. Existing threat modelling techniques are not designed to model GDPR compliance, particularly in a complex system where personal data is collected, processed, manipulated, and shared with third parties. In this paper, we present a novel comprehensive solution for developing a threat modelling technique to address threats of non-compliance and mitigate them by taking GDPR requirements as the baseline and combining them with the existing security and privacy modelling techniques (i.e., \textit{STRIDE} and \textit{LINDDUN}, respectively). For this purpose, we propose a new data flow diagram integrated with the GDPR principles, develop a knowledge base for the non-compliance threats, and leverage an inference engine for reasoning the GDPR non-compliance threats over the knowledge base. Finally, we demonstrate our solution for threats of non-compliance with legal basis and accountability in a telehealth system to show the feasibility and effectiveness of the proposed solution.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.