Computer Science > Networking and Internet Architecture
[Submitted on 22 Apr 2024]
Title:Cross-Modal Generative Semantic Communications for Mobile AIGC: Joint Semantic Encoding and Prompt Engineering
View PDF HTML (experimental)Abstract:Employing massive Mobile AI-Generated Content (AIGC) Service Providers (MASPs) with powerful models, high-quality AIGC services can become accessible for resource-constrained end users. However, this advancement, referred to as mobile AIGC, also introduces a significant challenge: users should download large AIGC outputs from the MASPs, leading to substantial bandwidth consumption and potential transmission failures. In this paper, we apply cross-modal Generative Semantic Communications (G-SemCom) in mobile AIGC to overcome wireless bandwidth constraints. Specifically, we utilize a series of cross-modal attention maps to indicate the correlation between user prompts and each part of AIGC outputs. In this way, the MASP can analyze the prompt context and filter the most semantically important content efficiently. Only semantic information is transmitted, with which users can recover the entire AIGC output with high quality while saving mobile bandwidth. Since the transmitted information not only preserves the semantics but also prompts the recovery, we formulate a joint semantic encoding and prompt engineering problem to optimize the bandwidth allocation among users. Particularly, we present a human-perceptual metric named Joint Perpetual Similarity and Quality (JPSQ), which is fused by two learning-based measurements regarding semantic similarity and aesthetic quality, respectively. Furthermore, we develop the Attention-aware Deep Diffusion (ADD) algorithm, which learns attention maps and leverages the diffusion process to enhance the environment exploration ability. Extensive experiments demonstrate that our proposal can reduce the bandwidth consumption of mobile users by 49.4% on average, with almost no perceptual difference in AIGC output quality. Moreover, the ADD algorithm shows superior performance over baseline DRL methods, with 1.74x higher overall reward.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.