Computer Science > Computer Vision and Pattern Recognition
[Submitted on 18 Apr 2024 (v1), last revised 24 Apr 2024 (this version, v2)]
Title:Progressive Multi-modal Conditional Prompt Tuning
View PDF HTML (experimental)Abstract:Pre-trained vision-language models (VLMs) have shown remarkable generalization capabilities via prompting, which leverages VLMs as knowledge bases to extract information beneficial for downstream tasks. However, existing methods primarily employ uni-modal prompting, which only engages a uni-modal branch, failing to simultaneously adjust vision-language (V-L) features. Additionally, the one-pass forward pipeline in VLM encoding struggles to align V-L features that have a huge gap. Confronting these challenges, we propose a novel method, Progressive Multi-modal conditional Prompt Tuning (ProMPT). ProMPT exploits a recurrent structure, optimizing and aligning V-L features by iteratively utilizing image and current encoding information. It comprises an initialization and a multi-modal iterative evolution (MIE) module. Initialization is responsible for encoding images and text using a VLM, followed by a feature filter that selects text features similar to image. MIE then facilitates multi-modal prompting through class-conditional vision prompting, instance-conditional text prompting, and feature filtering. In each MIE iteration, vision prompts are obtained from filtered text features via a vision generator, promoting image features to focus more on target object during vision prompting. The encoded image features are fed into a text generator to produce text prompts that are more robust to class shifts. Thus, V-L features are progressively aligned, enabling advance from coarse to exact prediction. Extensive experiments are conducted in three settings to evaluate the efficacy of ProMPT. The results indicate that ProMPT outperforms existing methods on average across all settings, demonstrating its superior generalization and robustness. Code is available at this https URL.
Submission history
From: Xiaoyu Qiu [view email][v1] Thu, 18 Apr 2024 02:40:31 UTC (1,534 KB)
[v2] Wed, 24 Apr 2024 12:36:10 UTC (1,109 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.